skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wasowski, Andrzej"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Linux Kernel is a world-class operating system controlling most of our computing infrastructure: mobile devices, Internet routers and services, and most of the supercomputers. Linux is also an example of low-level software with no comprehensive regression test suite (for good reasons). The kernel’s tremendous societal importance imposes strict stability and correctness requirements. These properties make Linux a challenging and relevant target for static automated program repair (APR). Over the past decade, a significant progress has been made in dynamic APR. However, dynamic APR techniques do not translate naturally to systems without tests. We present a static APR technique addressing sequentiallocking API misusebugs in the Linux Kernel. We attack the key challenge of static APR, namely, the lack of detailed program specification, by combining static analysis with machine learning to complement the information presented by the static analyzer. In experiments on historical real-world bugs in the kernel, we were able to automatically re-produce or propose equivalent patches in 85% of the human-made patches, and automatically rank them among the top three candidates for 64% of the cases and among the top five for 74%. 
    more » « less
  2. Fork-based development is popular and easy to use, but makes it difficult to maintain an overview of the whole community when the number of forks increases. This may lead to redundant development where multiple developers are solving the same problem in parallel without being aware of each other. Redundant development wastes effort for both maintainers and developers. In this paper, we designed an approach to identify redundant code changes in forks as early as possible by extracting clues indicating similarities between code changes, and building a machine learning model to predict redundancies. We evaluated the effectiveness from both the maintainer's and the developer's perspectives. The result shows that we achieve 57-83% precision for detecting duplicate code changes from maintainer's perspective, and we could save developers' effort of 1.9-3.0 commits on average. Also, we show that our approach significantly outperforms existing state-of-art. 
    more » « less